

Robotics in Marine & Maritime Environmental Monitoring

Robotics and Security Issues in Marine & Maritime Environmental Monitoring

Department of Shipping Trade and Transport Prof. Nikitas Nikitakos Univ. of the Aegean Dept. of Shipping Trade & Transport

Contents

- Introduction
- Embedded Systems
- Internet of Things (IoT)
- Robot Vehicles
- Proposed System
- Conclusions

Safer and Greener Shipping

- Sustainable transport is recognized as one of the biggest challenges today
- It is recognized that whilst shipping is relatively safe and clean, compared with other transport modes, the industry does have a significant impact on the environment

Marine Robotics

Embedded Systems

- The Embedded System (ES) is a computer system with a dedicated function within a mechanical or electrical system, often with real-time computing constraints
- It is embedded as part of a complete device often including hardware and mechanical parts
- , 90% of all microprocessors are manufactured as components of embedded systems

The basic Characteristics of ES, must be dependable:

- Reliability
- Maintainability
- Availability
- Safety
- Security

Internet of Things (IoT)

- IoT has evolved due to convergence of multiple technologies, including wireless communication, real-time analytics, machine learning, commodity sensors, and embedded systems
- IoT can be incorporated into environmental applications to produce dense and real-time maps of air and water pollution, noise level, temperature, and harmful radiation among others

Robot Vehicles

The robotic vehicles can perform operations on unstructured and often hostile environment

- Important element in order to enable them to become useful for humans is the possibility of autonomy and hence autonomous navigation
- With the development of technology and cost reduction today it is possible to develop small robotic vehicles capable of operating autonomously using simple electronic devices

Principle of operation of a path-tracking controller

PROPOSED SYSTEM

The basic diagram of proposed system

by using internet (communication between the user and a robotic vehicle)

- controlled with PWM techniques using a Microcontroller and Bidirectional DC Bridge for Motor Driving (by using WiFi)
- Arducam MT9M001 web camera comes with a maximum resolution of 1280×1024 at 30 fps
- motor driver IC l293d used to power the DC motors (will be used to manoeuvre the robotic vehicle)

An electronic nose (e-nose) system mimics the sense of smell and by using advanced chemo metric data analysis, an e-nose can perform diagnostics and predictions that are superior to what can be accomplished by the sense of smell

The hardware of MQ gas sensor has 4 pins:

- A0 Analog output
- D0 Digital output
 - GND Ground
- Vcc Supply (5V)

- The RF transmitter circuit diagram is shown below is used to connect different push buttons to move the robotic vehicle in different directions like as forward, backward, right and left
- RF receiver is also being a small in size and RF receiver has supply current of 3.5mA with an operating voltage of 5V. RF transmitter modules are designed to work with 433MHz only

The basic RF transmitter circuit

List of Sensors included of this proposed system

	MQ-2	Methane, LPG, Alcohol, Propane, Smoke
	MQ-3	Alcohol, Ethanol, Smoke
	MQ-4	Methane, CNG Gas
	MQ-5	Natural Gas, LPG
	MQ-6	LPG, butane
	MQ-7	Carbon Monoxide
	MQ-8	Hydrogen Gas
	MQ-9	Carbon Monoxide, Flammable gasses
Popular MO Series Gas Sensors		

Schematic diagram of a gas sensor

Their operating principle is based on the change of conductivity of a sensitive material when it absorbs or reacts with the gases in the environment

Block diagram of a smelling process with an MOX gas sensor

The sensor is excited by a volatile [ppm] producing a variation in the sensor resistance that is measured as an electrical signal [V] by means of a measurement circuit.

MQ-xx LPG & Natural Gas Detector Sensor Module for Arduino

MQ2 Gas sensor sensitivity graph

Converting the IR signal into RF signal

•RF signal does not required line of sight and have much better and long range then IR remote

•TSOP1738 is working as a IR detector or receiver.

Code for Interfacing of MQ Gas Sensor with Arduino

```
int sensorValue;
int digitalValue;
void setup()
 Serial.begin(9600); // sets the serial port to 9600
 pinMode(0, INPUT);
void loop()
 sensorValue = analogRead(0); // read analog input pin 0
 digitalValue = digitalRead(0);
 Serial.println(sensorValue, DEC); // prints the value read
 Serial.println(digitalValue, DEC);
 delay(2000);
                             // wait 100ms for next reading
```

CONCLUSIONS

Structural and machinery failures in the day-to-day ship operations may lead to major accidents, endangering crew onboard, posing a threat to the environment, damaging the ship itself and having a great impact in terms of business losses

- Maintenance is a primary service to be performed in complex systems, especially those whose failures can compromise personnel and environmental safety, such as large ships on sailing
- It is open source software using robotic, embedded systems and IoT technologies
- It offers protection of human resources in applications that are hazardous to human work

UNIVERSITY OF THE AEGEAN

Department of Shipping Trade and Transport

Thank you for your attention

nnik@aegean.gr